
Using spec Macro Hardware for EPICS PVs

Donald A. Walko
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439

d-walko@anl.gov

September 28, 2006

Introduction

Many beamlines at the Advanced Photon Source (APS) use EPICS to control all sorts of equip-
ment, such as motors, counters, gauges, pumps, etc. The individual pieces of named data are
known as Process Variables (PVs). On the other hand, most multicircle diffractometers at the
APS are controlled by spec [1]. In these situations, spec is usually built upon EPICS; that is,
spec communicates with the experiment hardware through EPICS. While it is straightforward
to integrate EPICS-controlled motors and counters into spec, experimenters may wish to have
spec interact with PVs which do not represent motors or counters. For example, one may want
to scan a voltage or read the output of an ohmmeter. One could in principal set up the voltage
as a spec motor, or convert the output of the meter into a frequency which can be fed into a
scaler. But a much better alternative is to use spec’s macro hardware facility. This document
presents the minimal steps necessary for accomplishing this.

spec macro hardware

spec is designed to be a flexible software package, capable of controlling many different types of
hardware. When spec is built on EPICS, the hardware control is usually shifted to EPICS. In
such cases, the foremost contribution of spec is its conversion between the reciprocal space of
the sample and the angular space of the diffractometer. In the spec configuration file, motors
controlled by EPICS have EPICS M2 in the controller field, and scalers have EPICS SC in their
device field [2]. But how can spec move something that is not a motor? How can spec measure
something that is not a frequency input into a scaler card? The answer is with spec macro
hardware. This fairly straightforward procedure requires certain settings for the “motor” or
“scaler” in config as well as some parameters set in a macro file. In the following sections we will
describe this procedure for macro motors and macro scalers respectively, presenting the minimal
requirements to accomplish this. Depending on the particular hardware, more parameters may
be needed; the examples here do not cover all of the possibilities or the full flexibility of macro
hardware. Details can be found on the spec help website [3].

As shown in the examples below, macro hardware needs to be set up in macro files (text
files which are read into spec, with user names such as filename.mac) and in the configuration

1

file (“config”). While particular macro motors and scalers are set up in config’s motor and
counter/scaler screens respectively, the existence of macro hardware needs to be introduced in
the device configuration screen. Here is an example of the screen set up for EPICS-controlled
macro motors and scalers:

Motor and Counter Device Configuration (Not CAMAC)

MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES ioc1: 10 EPICS Motor Controller

YES macmot 1 Macro Motors

NO

NO

NO

SCALERS DEVICE ADDR <>MODE NUM <>TYPE

YES ioc1:scaler1 3 EPICS Scaler as Counter/Timer

YES mac_cnt 2 Macro Counter

NO

NO

NO

Type ? and H for help, ^C to quit

Macro motors

Suppose an experimenter wanted to change a voltage during a spec scan. If the voltage source
is controlled by EPICS, then the PV associated with the voltage can be treated as a “macro
motor” in spec. First, a macro file needs to be set up to define the macro motor, and the
file must be read into spec (using the qdo command). The following is an example of the
contents of such a file, where the spec mnemonic of the macro motor is “vvv.” The PV
which sets the value is ioc1:Device:voltage.VAL and the PV which reads the current value
is ioc1:Device:voltage.RBV; both PVs are in units of volts.

2

macromotor_vvv.mac

#

def macmot_cmd(mne, key, p1) ’{

local ptemp

if (key == "set_position") { ### do not set position with spec

return

}

if (key == "position") { ### read position of macro motor

if (mne == vvv)

{ptemp = epics_get("ioc1:Device:voltage.RBV")

return (ptemp*1e6)}

else return(0)

}

if (key == "start_one") { ### move macro motor

if (mne == vvv)

{epics_put("ioc1:Device:voltage.VAL",p1/1e6)

sleep(.1)} ### optional, but may help

else

return

}

if (key == "get_status") {

return(0)

}

if (key == "preread_all") { return }

}’

In this example, the actual voltage from the device in on a microvolt scale, which is in-
convenient for spec (and also for the user who must make sure to type in the correct number
of leading zeros). Therefore, the value is scaled up by a factor of 106, so vvv is in units of
microvolts.

The next step is to set up the motor in config. This is what the motor screen might look
like, with three “regular” motors followed by one macro motor:

3

Number: <>Controller 1:EPICS_M2 2:EPICS_M2 3:EPICS_M2 4: MAC_MOT

Unit/[Module/]Channel 0/2 0/3 0/1 0/0

Name Theta Chi Phi Vvv

Mnemonic th chi phi vvv

<>Spectrometer fourc fourc fourc fourc

Steps per degree/mm -25000 25000 2500 1e+06

Sign of user * dial 1 1 1 1

Backlash [steps] 50 50 50 50

Steady-state rate [Hz] 2000 2000 2000 2000

Base rate [Hz] 200 200 200 200

Acceleration time [msec] 125 125 125 125

Motor accumulator 0 0 253216 0

Restrictions <> NONE NONE NONE NONE

Dial = accumulator / steps

High limit 50.0000 59.0000 500.0000 9.9500

Current 0.0000 0.0000 101.2864 0.0000

Low limit -10.0000 -60.0000 -500.0000 0.0050

User = sign * dial + offset

Offset 0.0000 0.0000 -40.9701 0.0000

‘High’ limit 50.0000 59.0000 459.0300 9.9500

Current 0.0000 0.0000 60.3164 0.0000

‘Low’ limit -10.0000 -60.0000 -540.9700 0.0050

Number of motors (geo/all) 31 / 31 Type ? and H for help, ^C to quit

In this minimal example, several fields do not matter for the macro motor (sign, backlash,
rate) and were left at their default values. The “Steps per degree/mm” field does matter, for
displaying vvv in microvolts. The limits are also used, so in this case, the range of vvv is
roughly 0 to 10 microvolts.

The final step is to make sure that spec checks the position of the macro motor before
attempting to move it. This becomes an issue when the PV is changed in EPICS or elsewhere
outside of spec. To do this, go to the second “optional motor parameters” screen in config
(type “m” twice from the main motors screen) and set the “Hardware read mode” field to its
most conservative, i.e., PR+AL+NQ. In this mode, spec always checks EPICS before moving
the macro motor or reading its position, and assumes that EPICS is correct if there is a
disagreement.

Macro counters

Let’s now assume that an experimenter wants spec to read PVs which comes from EPICS user
calculations. We can treat the PVs as macro counters. Their mnemonics are value1 and value2,

4

with PVs of ioc1:userCalc1.VAL and ioc1:userCalc2.VAL respectively. Again, one connects
the mnemonics and PVs in a macro file, which must be read into spec with a qdo command,
such as the following:

macro_usercalcs.mac

#

def mac_cnt_cmd(mne,key, p1, p2) ’{

if (key == "counts") {

if (mne == value1) {return 1*(epics_get("ioc1:userCalc1.VAL"))}

else if (mne == value2){ return 1*(epics_get("ioc1:userCalc2.VAL"))}

}

if (key == "halt_all") return

if (key == "halt_one") return

if (key == "prestart_all") return

if (key == "prestart_one") return

}’

Note that, when a count is performed (either with the ct command or as part of a scan),
the value of the PV is returned, regardless of counting time. That is, if the PV does not change,
then ct 1 and ct 10 would return the same values for the value1 macro counter.

The scaler screen of the config file might look like this:

Scaler (Counter) Configuration

Numb Name Mnemonic <>Spectro <>Device Unit Chan <>Use As Scale

0 Seconds sec fourc EPICS_SC 0 0 timebase 1e+07

1 Monitor mon fourc EPICS_SC 0 1 monitor 1

2 Detector det fourc EPICS_SC 0 2 counter 1

3 Value1 value1 fourc MAC_CNT 0 0 counter 1

4 Value2 value2 fourc MAC_CNT 0 1 counter 1

Number of counters (geo/all) 5 / 5 Type ? and H for help, ^C to quit

References

[1] Certified Scientific Software, Cambridge, MA.

[2] http://www.certif.com/spec help/epics.html

[3] http://www.certif.com/spec help/mac hdw.html

5

